live :
He was born in a Persian family, and his birthplace is given as Chorasmia by Ibn al-Nadim. Few details of al-Khwārizmī life are known with certainty. His name may indicate that he came from Khwarezm (Khiva), then in Greater Khorasan, which occupied the eastern part of the Greater Iran, now Xorazm Province in Uzbekistan. Abu Rayhan Biruni calls the people of Khwarizm "a branch of the Persian tree".
Al-Tabari gave his name as Muhammad ibn Musa al-Khwārizmī al-Majousi al-Katarbali ( محمد بن موسى الخوارزميّ المجوسـيّ القطربّـليّ). The epithet al-Qutrubbulli could indicate he might instead have come from Qutrubbul (Qatrabbul), a viticulture district near Baghdad. However, Rashed suggests:
There is no need to be an expert on the period or a philologist to see that al-Tabari's second citation should read “Muhammad ibn Mūsa al-Khwārizmī and al-Majūsi al-Qutrubbulli,” and that there are two people (al-Khwārizmī and al-Majūsi al-Qutrubbulli) between whom the letter wa [Arabic ‘و’ for the article ‘and’] has been omitted in an early copy. This would not be worth mentioning if a series of errors concerning the personality of al-Khwārizmī, occasionally even the origins of his knowledge, had not been made. Recently, G. J. Toomer ... with naive confidence constructed an entire fantasy on the error which cannot be denied the merit of amusing the reader.
Regarding al-Khwārizmī's religion, Toomer writes:
Another epithet given to him by al-Ṭabarī, "al-Majūsī," would seem to indicate that he was an adherent of the old Zoroastrian religion. This would still have been possible at that time for a man of Iranian origin, but the pious preface to al-Khwārizmī's Algebra shows that he was an orthodox Muslim, so al-Ṭabarī's epithet could mean no more than that his forebears, and perhaps he in his youth, had been Zoroastrians.
Ibn al-Nadīm's Kitāb al-Fihrist includes a short biography on al-Khwārizmī, together with a list of the books he wrote. Al-Khwārizmī accomplished most of his work in the period between 813 and 833. After the Islamic conquest of Persia, Baghdad became the centre of scientific studies and trade, and many merchants and scientists from as far as China and India traveled to this city, as did Al-Khwārizmī. He worked in Baghdad as a scholar at the House of Wisdom established by Caliph al-Maʾmūn, where he studied the sciences and mathematics, which included the translation of Greek and Sanskrit scientific manuscripts.
D. M. Dunlop suggests that it may have been possible that Muḥammad ibn Mūsā al-Khwārizmī was in fact the same person as Muḥammad ibn Mūsā ibn Shākir, the eldest of the threeBanū Mūsā
Contributions :
Algebra:
Al-Kitāb al-mukhtaṣar fī ḥisāb al-jabr wa-l-muqābala (Arabic: الكتاب المختصر في حساب الجبر والمقابلة, 'The Compendious Book on Calculation by Completion and Balancing') is a mathematical book written approximately 830 CE. The book was written with the encouragement of the Caliph al-Ma'mun as a popular work on calculation and is replete with examples and applications to a wide range of problems in trade, surveying and legal inheritance.The term algebra is derived from the name of one of the basic operations with equations (al-jabr, meaning completion, or, subtracting a number from both sides of the equation) described in this book. The book was translated in Latin as Liber algebrae et almucabala by Robert of Chester (Segovia, 1145) hence "algebra", and also by Gerard of Cremona. A unique Arabic copy is kept at Oxford and was translated in 1831 by F. Rosen. A Latin translation is kept in Cambridge.
It provided an exhaustive account of solving polynomial equations up to the second degree,and discussed the fundamental methods of "reduction" and "balancing", referring to the transposition of subtracted terms to the other side of an equation, that is, the cancellation of like terms on opposite sides of the equation.
Al-Khwārizmī's method of solving linear and quadratic equations worked by first reducing the equation to one of six standard forms (where band c are positive integers)
- squares equal roots (ax2 = bx)
- squares equal number (ax2 = c)
- roots equal number (bx = c)
- squares and roots equal number (ax2 + bx = c)
- squares and number equal roots (ax2 + c = bx)
- roots and number equal squares (bx + c = ax2)
Arithmetic
Al-Khwārizmī's second major work was on the subject of arithmetic, which survived in a Latin translation but was lost in the original Arabic. The translation was most likely done in the twelfth century by Adelard of Bath, who had also translated the astronomical tables in 1126.
The Latin manuscripts are untitled, but are commonly referred to by the first two words with which they start: Dixit algorizmi ("So said al-Khwārizmī"), or Algoritmi de numero Indorum ("al-Khwārizmī on the Hindu Art of Reckoning"), a name given to the work by Baldassarre Boncompagni in 1857. The original Arabic title was possibly Kitāb al-Jamʿ wa-l-tafrīq bi-ḥisāb al-Hind ("The Book of Addition and Subtraction According to the Hindu Calculation")
Al-Khwarizmi's work on arithmetic was responsible for introducing the Arabic numerals, based on the Hindu-Arabic numeral system developed in Indian mathematics, to the Western world. The term "algorithm" is derived from the algorism, the technique of performing arithmetic with Hindu-Arabic numerals developed by al-Khwarizmi. Both "algorithm" and "algorism" are derived from the Latinized forms of al-Khwarizmi's name, Algoritmi and Algorismi, respectively.
Astronomy
Al-Khwārizmī's Zīj al-Sindhind (Arabic: زيج "astronomical tables of Sind and Hind") is a work consisting of approximately 37 chapters on calendrical and astronomical calculations and 116 tables with calendrical, astronomical and astrological data, as well as a table of sine values. This is the first of many Arabic Zijes based on the Indian astronomical methods known as the sindhind.The work contains tables for the movements of the sun, the moon and the five planets known at the time. This work marked the turning point in Islamic astronomy. Hitherto, Muslim astronomers had adopted a primarily research approach to the field, translating works of others and learning already discovered knowledge.
The original Arabic version (written c. 820) is lost, but a version by the Spanish astronomer Maslamah Ibn Ahmad al-Majriti (c. 1000) has survived in a Latin translation, presumably by Adelard of Bath (January 26, 1126). The four surviving manuscripts of the Latin translation are kept at the Bibliothèque publique (Chartres), the Bibliothèque Mazarine (Paris), the Bibliotheca Nacional (Madrid) and the Bodleian Library (Oxford).
Trigonometry
Al-Khwārizmī's Zīj al-Sindhind also contained tables for the trigonometric functions of sines and cosine.A related treatise on spherical trigonometry is also attributed to him.
No comments:
Post a Comment